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We combine a muon spin relaxation (μSR) technique with thermodynamic measurements to explore the
spin dynamics of one-dimensional (1D) S = 1

2 antiferromagnetic double chain KNaCuP2O7. Static magnetic
susceptibility and specific heat are well described by a uniform 1D spin chain model with the intrachain
interaction J/kB ≈ 55 K and small interchain interactions. Spin excitations probed by zero-field μSR evince
that high-temperature diffusive spin transport turns into ballistic behavior with decreasing temperature below
30 K. In addition, we observe that longitudinal-field μSR varies hardly with an external magnetic field. The
field-independent dynamical spin susceptibility disagrees with diffusive or ballistic behaviors.
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I. INTRODUCTION

Since the pioneering works of Ising and Bethe [1,2],
one-dimensional (1D) spin chains have been the subject of
continuous theoretical and experimental research. 1D quan-
tum magnets host ground states and phases markedly different
from their higher-dimensional counterparts and provide a
conspicuous laboratory to examine fundamental theories of
quantum magnetism due to their analytical solvability [3].

A S = 1
2 antiferromagnetic Heisenberg spin chain (AFHC)

is known to harbor a spin-liquid ground state even in the
limit of zero temperature, in which reduced dimensionality
and strong quantum fluctuations inhibit long-range order de-
spite the algebraically decaying spin-spin correlations [4].
As local excitations do not exist in one dimension, a spin-
flip excitation is fractionalized into spinons carrying spin- 1

2
without charge [5]. Noticeably, a nontrivial crossover oc-
curs between the high-temperature superdiffusive regime and
the low-temperature response described by the Tomonaga-
Luttinger liquid (TLL) theory, which predicts power-law spin
correlations or fractionalization of the excitations [6–13].
Owing to the integrability of a S = 1

2 AFHC, ballistic spin
transport is purported to dictate dynamic properties of finite
magnetic fields and a ground state [14,15].

From a material perspective, experimental realizations of
a true 1D quantum spin chain are challenging as residual,
nonfrustrated interchain couplings are apt to stabilize a long-
range magnetic order. Notwithstanding, inherent 1D physics
is still retained in the presence of weak interchain interactions.
Among S = 1

2 spin chain compounds, copper-based oxides
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(Cu2+; 3d9) provide a rich reservoir for AFHC model systems
due to their versatile connectivity of exchange paths.

The prominent instances include CuGeO3 [16], SrCuO2

[17], Sr2CuO3 [17], LiCuVO4 [18], Li2CuO2 [19,20],
γ -LiV2O5 [21], and Cs4CuSb2Cl12 [22]. In particular, the cop-
per phosphates (Sr, Ba)2Cu(PO4)2 [23,24], (Sr, Pb)CuP2O7

[25], BaCuP2O7 [26], K2CuP2O7 [27], and (Li, Na)2CuP2O7

[28] have been regarded as the best realization of a uniform
1D Heisenberg chain. This is owed to the fact that individual
chains formed by the corner/edge sharing of CuO4 and PO4

tetrahedra are separated by the alkali cations.
Herein, we focus on KNaCuP2O7, which belongs to the

family of A2CuP2O7 (A = Na, Li, and K) [29]. KNaCuP2O7

crystallizes in a monoclinic structure with space group P21/n,
which is distinct from its sister compounds: (Na, Li)2Cu2O7

with space group C2/c and K2Cu2O7 with space group Pbnm.
As depicted in Fig. 1(a), distorted CuO4 plaquettes are con-
nected by four corner-sharing PO4 tetrahedra, forming spin
chains with the intrachain exchange coupling J along the a
axis. The Na and K alkali cations are located in the inter-
stitial sites between two neighboring chains, giving rise to
frustrated interchain couplings. The interchain couplings J ′
and J ′′ are much smaller than the intrachain interaction J due
to the large interchain distance (5.676–5.772 Å). Recent 31P
and 23Na nuclear magnetic resonance (NMR) and thermody-
namic studies in conjunction with first-principles calculations
show that KNaCuP2O7 realizes a quasi-1D uniform S = 1

2
Heisenberg antiferromagnet with J/kB � 58.7 K [30]. Mag-
netic long-range order was precluded down to 2 K, supporting
the notion of weak, frustrated interchain couplings.

In this paper, we employ muon spin relaxation (μSR)
and thermodynamic measurements to clarify whether low-
energy spin excitations of KNaCuP2O7 bear spin dynamics
inherent to a S = 1

2 AFHC model. A temperature dependence
of low-energy dynamical susceptibility obtained from the
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FIG. 1. (a) Crystal structure of KNaCuP2O7. The Cu atoms (blue
balls) constitute a double chain formed by the corrugated layer of
corner-shared CuO5 distorted square pyramides bridged by P2O7

groups along the a direction. The alkali cations (pink and yel-
low spheres) are located in the interstitial sites between the layers.
(b) Rietveld refinement of the synchrotron XRD powder pattern of
KNaCuP2O7 taken at room temperature. The observed data, Rietveld
refinement fit, difference curve, and Bragg peaks are denoted by
the red open circles, green solid line, purple line, and vertical black
dashes, respectively. (c) Temperature dependence of the dc magnetic
susceptibility χ (T ) of KNaCuP2O7 measured in an applied field of
μ0H = 0.01 T. The pink solid line represents a fit to Eq. (1). The
dc magnetic susceptibility is composed of the impurity contribution
χimp (orange dashed curve) and the Heisenberg antiferromagnetic
spin chain susceptibility χchain (open triangle symbol). (d) Inverse
magnetic susceptibility 1/χ as a function of temperature. The red
solid line is the Curie-Weiss law fit of the T = 150–300 K data to
χ (T ) ∼ C/(T − �CW ).

muon spin-lattice relaxation rate demonstrates a diffusive-to-
ballistic crossover of spin transport on cooling through 30 K.
Conversely, a magnetic-field dependence of the dynamic sus-
ceptibility lacks signatures of 1D spin dynamics, deserving of
further investigations.

II. EXPERIMENTAL DETAILS

A polycrystalline sample of KNaCuP2O7 was synthesized
by the standard solid-state reaction method with a stoichio-
metric amount of K2CO3, Na2CO3, CuO, and P2O5 (purity
higher than 99.95%). The mixture of reagents was heated at
400 ◦C for 48 h in air, ground, and sintered at 500 and 570 ◦C
for 48 h each with intermediate grindings.

The phase purity and crystal structure were checked by
synchrotron x-ray diffraction (XRD) using the MYTHEN
detector with a 15 keV beam at 09A beamline of NSRRC
in Taiwan. The powder sample was packed in a 0.1-mm
borosilicate capillary tube. The capillary tube was kept
spinning during the data collection. The data were an-
alyzed by the Rietveld method using the Bruker TOPAS

program. Figure 1(b) shows the synchrotron powder XRD
pattern of KNaCuP2O7 measured at room temperature. The
refined lattice parameters are a = 5.186 10 ± 0.000 02 Å,

b = 14.002 81 ± 0.000 05 Å, c = 9.081 73 ± 0.000 03 Å, and
V = 659.344 ± 0.004 Å3, which are in good agreement with
the values reported in the literature [29]. The goodness of fit
obtained by the residual refinement factors is Rp = 1.36%,
Rwp = 2.23%, Rexp = 0.39%, and χ2 = 5.78.

Magnetic susceptibility was measured using a super-
conducting quantum interference device vibrating-sample
magnetometer (SQUID-VSM, Quantum Design). The specific
heat measurements were performed using a standard relax-
ation method with a physical property measurement system
(PPMS, Quantum Design). Muon spin relaxation (μSR) ex-
periments were performed on the GPS spectrometer at Paul
Scherrer Institute (Villigen, Switzerland). The finely ground
polycrystalline samples of KNaCuP2O7 were packed using an
alumina foil and attached to the sample holder. The detector
efficiency between forward and backward positron detectors
was determined from the weak transverse field measurements
in an applied field of H = 50 G at 200 K. All the μSR data
were analyzed using the MUSRFIT software package [31].

III. RESULTS AND DISCUSSION

A. Magnetic susceptibility and specific heat

In Fig. 1(c), we present the temperature dependence of the
dc magnetic susceptibilities χ (T ) (=M/H) of KNaCuP2O7

measured in an applied field of μ0H = 0.01 T. We observe
no thermal hysteresis between the zero-field-cooled (ZFC)
and field-cooled (FC) cycles, ruling out the presence of in-
homogeneous magnetism. χ (T ) shows a broad maximum at
T ∗ = 35 K, characteristic of low-dimensional systems fea-
turing short-range ordering. For temperatures below 6.5 K,
a Curie-like upturn arises from paramagnetic impurities and
defect spins. We detect no signature of long-range magnetic
ordering down to 1.8 K.

We first analyze the high-T paramagnetic χ (T ) data (T =
150–300 K) in terms of the Curie-Weiss law χ (T ) ∼ C/(T −
�CW). We obtain the Curie constant C = 0.4402 ± 0.0003
emu mol−1 K and the Curie-Weiss temperature �CW =
−40.21 ± 0.93 K [see the red solid line in the inset of
Fig. 1(d)]. The negative �CW value indicates the dominant
antiferromagnetic couplings between the adjacent Cu2+ spins.
The calculated effective magnetic moment of μeff = 1.87 ±
0.02μB per Cu2+ from the Curie constant is slightly larger
than the spin- 1

2 only value of μcal = 1.73μB. Here, μB is the
Bohr magneton. In order to differentiate between the impurity
χimp and spin chain χchain contributions, the observed χtot (T )
data are modeled with the following expression,

χtot (T ) = χ0 + χimp(T ) + χchain(T ), (1)

where χ0 is the temperature-independent susceptibility
which includes the Van Vleck paramagnetic and core dia-
magnetic contributions. χimp = Cimp/(T − �imp) captures a
paramagnetic impurity contribution, and χchain(T ) is the
S = 1

2 uniform antiferromagnetic chain model calculated
by Johnston et al. [32]. Here, Cimp and �imp are the
Curie constant and Curie-Weiss temperature for impurity
spins, respectively. Optimized fittings of the χtot (T ) data
yield χ0 = (1.40 ± 0.23) × 10−5 emu/mol, Cimp = 0.0017 ±
0.0005 emu mol−1 K, �imp = −0.45 ± 0.03 K, the intrachain
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FIG. 2. (a) Temperature dependence of the total heat capacity
Cp(T ) in selected magnetic fields B = 0 (pink solid circles) and 9 T
(indigo blue squares). The dashed curve denotes the evaluated lattice
contributions using the combined Debye and Einstein model. The
log-log plot of Cp(T ) in the inset demonstrates no difference between
μ0H = 0 and 9 T. (b) Temperature dependence of the magnetic
specific heat divided by temperature Cm/T on a log scale. The solid
line is the calculated spin entropy Sm(T ) as a function of temperature.

interaction J/kB ≈ 55 K, and the g factor of g ≈ 2.12. Overall,
the extracted parameters are comparable to the reported values
[30]. The impurity concentration is estimated to be 0.4%.
The small value of �imp indicates that the impurity spins are
weakly coupled. Further, we testify the validity of the S = 1

2
AFHC based on the relationship χ (T = T ∗)T ∗ = 0.0353g2.
With χ (T = T ∗) = 0.004 55 emu mol−1 and T ∗ = 35 K, we
obtain χ (T = T ∗)T ∗/g2 = 0.035 43, consistent with the the-
oretical value [32].

To probe low-energy quasiparticle excitations, we per-
formed heat capacity measurements over the temperature
range of T = 2–300 K. Figure 2(a) shows the specific heat
as a function of temperature Cp(T ) in zero magnetic field
and μ0H = 9 T. No λ-type anomaly associated with the long-
range magnetic order was seen down to 2 K. In addition, we
find no essential difference between Cp(T, μ0H = 0 T) and
Cp(T, μ0H = 9 T), as seen from the inset of Fig. 2(a).

The magnetic specific heat Cm is singled out by subtract-
ing the lattice contribution Clat from the total heat capacity.
We estimate the Clat contribution by fitting of the Cp(T )
data in the temperature range of T = 45–250 K using a sum
of one Debye (CDebye) and two Einstein (CEinstein,i) terms:

Clat = CDebye + CEinstein,i. The CDebye and CEinstein,i terms are
given as

CDebye = a

[
9R

( T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx

]
, (2)

CEinstein,i = 3R
2∑

i=1

bi

[(
θE ,i

T

)2 eθE ,i/T

(eθE ,i/T − 1)2

]
, (3)

where R is the universal gas constant, and θD and θE ,i are
the Debye and Einstein temperatures, respectively. The a
and bi are the weighting factors of the Debye and Einstein
coefficients, respectively. In the course of the fittings, the
sum of oscillator strengths was fixed to match with the to-
tal number of atoms per the formula unit, namely, a + b1 +
b2 = 12. With the fitting parameters θD = 225.7(2) K, θE ,1 =
483.9(7) K, θE ,2 = 1300.4(9) K, a = 4.0(5), b1 = 4.1(3),
and b2 = 3.9(4), we reach a good agreement between the
experimental data and the theoretical calculation.

In Fig. 2(b), we plot the resulting magnetic specific heat
divided by temperature Cm/T vs T on a log scale. Cm/T
shows a broad maximum around 16 K and then nearly flattens
out below 5 K. Further, we note that Cm/T is almost quenched
above 50 K (≈J/kB). The low-T linear magnetic contribution
Cm/T = γ is characteristic of a gapless 1D S = 1

2 AFHC,
enabling estimation of J/kB by the relation γth = 2R/(3J/kB)
for T < 0.2J/kB [32]. With J/kB ≈ 55 K, we evaluate γ =
0.0987(2) J mol−1 K−2, in good agreement with the theoreti-
cal value of γth = 0.1 J mol−1 K−2. The T dependence of the
magnetic entropy Sm, calculated by integrating Cm/T over a
temperature, is plotted in the right panel of Fig. 2(b). At para-
magnetic high temperatures, the total magnetic entropy Sm(T )
reaches 5.59 J mol−1 K−1, which is somewhat smaller than the
theoretical value R ln(2s + 1) = 5.76 J mol−1 K−1 for S = 1

2 .
The missing magnetic entropy heralds weak magnetic order-
ing for temperatures below 1 K, which should be confirmed by
the future low-T specific heat and μSR measurements. Thus,
we did not attempt to make a linear extrapolation of Clat down
to zero.

B. Muon spin relaxation

To investigate the slow-time behavior of local spin corre-
lations inherent to the TLL phase, we conducted zero-field
(ZF)- and longitudinal-field (LF)-μSR experiments down to
T = 1.6 K.

Shown in Fig. 3(a) are the ZF-μSR spectra at selected
temperatures. Over the entire measured temperature range
of T = 1.6–200 K, the ZF-μSR spectra are dominated by a
Gaussian-like relaxation, while showing a small variation with
temperature. The Gaussian relaxation shape is characteristic
of quasistatic nuclear moments. Additionally, the quantum
fluctuations of electronic moments give rise to an exponential
relaxation of the muon spin polarization. The gross relaxation
function is described by the Gaussian Kubo-Toyabe function
GKT(�t ) multiplied by a simple exponential function, Pz(t ) =
GKT exp(−λZFt ). Here, the Gaussian Kubo-Toyabe function is
given by GKT(�t ) = 1

3 + 2
3 [1 − (�t )2] exp[− 1

2 (�t )2], λZF is
the ZF muon spin relaxation rate, and � is the nuclear field
distribution [33]. None of the following signatures of long-
range magnetic ordering were observed: (i) coherent muon
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FIG. 3. (a) Representative ZF-μSR spectra at various tempera-
tures T = 1.6, 30, and 200 K. The solid curves denote the fits to
the data using the Gaussian Kubo-Toyabe function multiplied by
an exponential function. (b) Nuclear field distribution �(T ) as a
function of temperature. The horizontal dashed line represents an
average value of �(T ) ∼ 0.115 MHz. (c) Temperature dependence
of the muon spin relaxation rate. The dotted and dashed curves
indicate the contributions of the spin excitations from q = π/a and
q = 0, as described in the main text.

spin oscillation signals, (ii) loss of initial asymmetry, and (iii)
1/3 recovery of the muon spin polarization. This observation
is consistent with the previous NMR results, suggesting the
long-range magnetic order around TN ∼ 1 K [30].

The obtained fitting parameters are plotted in Figs. 3(b) and
3(c). The nuclear field distribution �(T ) is nearly temperature
independent with an average value of � ∼ 0.115 MHz. We
find that the electronic contribution to the muon spin relax-
ation, λZF, is roughly one order of magnitude smaller than
�, implying that the electronic moments rapidly fluctuate at
all the measured temperatures. As shown in Fig. 3(c), λZF(T )
exhibits nonmonotonic behavior. Before proceeding, we recall
that for the 1D S = 1

2 AFHC, the muon spin relaxation is
composed of two contributions [34,35]: (i) uniform q = 0 spin
excitations and (ii) staggered q = π/a excitations. The un-
form contribution leads to λZF(T ) ∼ T/J + 38.3(T/J )2 [see
the dotted line in Fig. 3(c)], while the staggered component
gives a

√
ln(4.5J/T ) dependence [see the dashed line in

Fig. 3(c)]. Our λZF(T ) data are best reproduced by a sum
of the q = 0 and q = π/a contributions [see the solid line in
Fig. 3(c)]. This analysis reveals that the muon relaxation rate
is dominated by the q = 0 (q = π/a) term above T = 30 K
(below T = 30 K). The essentially same trend is observed by
μSR of DEOCC-TCNQF4 [36] and 23Na NMR of the studied
compound [30]. Consistent with our μSR results, 23Na 1/T1

shows the switching of the dominant contribution from the
high-T uniform to the low-T staggered excitations through
T ≈ 20–30 K [30].

To shine a light on the nature of spin transport and spin-spin
correlation, we turn to the LF-μSR results of KNaCuP2O7.
Figure 4 presents the selected LF-μSR measured at T = 1.6 K
and T = 70 K. Apparently, a small applied LF (<10 G) can
decouple the muon spins from the internal nuclear fields.
However, in the applied LF of 100 G, we observe a small but

FIG. 4. Representative LF-μSR spectra at (a) T = 1.6 K and
(b) T = 70 K. The solid curves indicate the fits to the data using
the Gaussian Kubo-Toyabe function in a longitudinal external field
multiplied by an exponential function.

finite relaxation, suggesting the residual dynamically fluctuat-
ing spins.

The LF data are well described by the Gaussian
Kubo-Toyabe function in an external LF multiplied by
an exponential function, Pz(t ) = GLF

KT exp(−λLFt ). Here,
GLF

KT is the Gaussian Kubo-Toyabe function in an applied
LF, GLF

KT = 1 − 2�2

(2πνLF )2 [1 − exp(− 1
2�2t2) cos(2πνLFt )] +

2�4

(2πνLF )3

∫ t
0 exp(− 1

2�2t2) sin(2πνLFτ )dτ , where νLF is the
frequency of an applied LF [37]. All the data are well
fitted with the common value of � = 0.120(2) MHz,
corresponding to the local field ∼8.85 G. This is well
consistent with the nearly decoupled LF data at 100 G, which
is typically ten times larger than the internal random static
fields.

In Fig. 5, we exhibit the field dependence of the longitu-
dinal relaxation rate λLF(H ). The steep increase of λLF(H )
below 10 G is ascribed to decoupling the muon spins from
the nuclear dipole field distribution. For applied fields above
10 G, the field dependence of λLF(H ) is largely dominated
by fluctuations of the local electronic magnetic fields and
becomes nearly H independent.

In a S = 1
2 AFHC, three different types of spin transport

have been discussed: diffusive, ballistic, and superdiffusive.
Fluctuations at q = 0 are diffusive at high temperatures and
ballistic in the low-T TLL regime [34]. In contrast, fluctua-
tions at q = π/a are diffusive, yet ballistic as q is off from
this point. The spectral density varies with frequency ω as
f (ω) ∼ ln(J/ω) for ballistic motion and f (ω) ∼ ω−1/2 for
1D diffusive transport. Accordingly, the H dependence of λLF

follows 1/
√

H behavior for 1D diffusion (the dashed lines
in Fig. 5) and ln(J/H ) for ballistic spin transport (the dotted
lines in Fig. 5). This theoretical prediction has been observed
in a number of μSR and NMR studies on S = 1

2 AFHC
compounds including SrCuO2, Sr2CuO3, Rb4Cu(MoO4)3,
and DEOCC-TCNQF4 [36,38–40]. On the other hand, a
series of recent theoretical calculations have established
that the high-T dynamics of the S = 1

2 AFHC obeys the
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FIG. 5. Longitudinal-field dependence of the muon spin relax-
ation rate λLF(H ) measured at (a) T = 1.6 K and (b) T = 70 K. The
dotted line illustrates the logarithmic behavior expected for ballistic
spin transport. The dashed line denotes a spin diffusion model. The
solid lines indicate the power-law behaviors λLF ∼ T n.

Kardar-Parisi-Zhang (KPZ) universality class with the dy-
namical exponent z = 3/2 and that a spatiotemporal crossover
occurs from a high-T superdiffusive regime related to KPZ
hydrodynamics to low-T ballistic dynamics [9–13,41]. The
predicted superdiffusive behavior was confirmed in KCuF3

by inelastic scattering in the limit of small momentum and
vanishing frequency [42]. So far, however, μSR and NMR
evidence for the superdiffusive transport is lacking.

Analysis of our λLF(H ) data reveals that no known the-
oretical models can provide a description of both the low-

and high-T data (compare the theoretical curves with the
experimental data). At the moment, it is not far clear why
the H dependence of λLF(H ) is neither (super)diffusive nor
ballistic. One thinkable origin is impurities, which can mod-
ify a low-energy excitation spectrum, as inferred from the
Curie tail of χ (T ) in Fig. 1(c). Given the fact that the T -
dependence λZF contains the q = 0 and q = π/a excitations,
a small amount of impurities can admix these two modes and
allow for additional contributions arising from q 	= 0, π/a
excitations [36]. In addition to the impurity-induced local-
ized excitations, quadrupolar resonances arising from three
quadrupolar nuclei present in this material could also increase
the observed relaxation rate relative to the expected behav-
iors. Future experiments in higher fields are indispensable for
resolving this issue.

IV. CONCLUSIONS

To conclude, we have investigated both static and dynamic
spin susceptibility of KNaCuP2O7. Our thermodynamic data
are consistent with the theoretical results of a 1D S = 1

2
AFHC model down to 1.8 K. Further, we have tested the
one-dimensional theory by probing spin transport using zero-
and longitudinal-field μSR. Temperature dependence of the
muon spin relaxation rate shows a thermal crossover from
diffusive to ballistic spin transport through 30 K. This is con-
trasted by field-dependent μSR, which lacks either diffusive
or ballistic behaviors. We call for future experiments to clarify
the seeming inconsistency.
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